Quantum Mechanics Book in Amharic Einstein Project in Africa

Quantum Mechanics Phys 528

1- The wave function of an electron in an infinite potential well of width L is given by

$$\psi(x) = A \sin \frac{4\pi x}{L}$$

- a) Find the normalization constant A.
- b) What is the energy corresponding to this state?
- c) Sketch the above wave function.

2- A particle in the harmonic oscillator potential has an initial wave function, $\psi(x,0)$, for some constant A.

$$\psi(x,0) = A[\phi_1(x) + \phi_2(x) + 3 \phi_3(x)]$$

- a) Find A by normalizing $\psi(x, 0)$.
- b) Find the probability the particle is found in the ground state.
- c) Find the expectation value of the position of the particle, <x>.

3- A one-dimensional harmonic oscillator wave function is

$$\psi(x) = Axe^{-bx^2}$$

- a) Find the total energy E.
- b) Find the constant b.
- c) Find the normalization constant A.

4. For the Hamiltonian matrix **H**: $H = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

- a) Find its eigenvalues
- b) Find the corresponding eigenvectors

5- What is the up-to-date interpretation of the wave function $\psi(x,t)$, solution of the Schrödinger equation?

- 6- The complete set expansion of an initial wave function Y(x,0) of a system in terms of energy eigenfunctions Y_n of the system has three terms: that is, n=1, 2, and 3. The measurement of energy on the system represented by Y(x,0) gives the values E_1 and E_2 with probability $\frac{1}{2}$ 4 and E_3 5 with probability $\frac{1}{2}$ 5. Write down the most general expansion of
 - a. Ψ(x,0)
 - b. Ψ(x,t)
- 7- A one-dimensional potential barrier is shown in Figure 1. Calculate the transmission coefficient for particles of mass m and energy $E\left(V_1 \!\!<\!\! E \!\!<\!\! V_0\right)$ incident on the barrier from the left.

Figure 1

- 8- Consider a 3-D harmonic oscillator shown in Figure 2, with potential $V(r) = m\omega^2 r^2/2.$ Find the
 - a. Find the energy En
 - b. Find the corresponding degeneracy d(n).
 - c. Find r > and $r^2 >$.
 - d. Find $\leq x \geq$ and $\leq x^2 >$.

Figure 2

- 9- Why is the ground state energy of a harmonic oscillator non-zero.
- 10- Calculate the following commutator
 - a. [H,t], where H is the Hamiltonian given by $H = P^2/2m + V$.
 - b. [H,t], where H is the Hamiltonian given by H=i $\hbar \frac{\partial}{\partial t}$
 - c. Explain the apparent contradiction as to why part a and b give two very different answers for the same commutator.

- 1- Consider a finite square barrier potential shown below, Figure A. For a < x < b, the space part of the electron wave function has the form: $k^2 = 2mE/\hbar^2$ and $g^2=2m(V_o-E)/\hbar^2$ (a) Ae^{ikx} (b) Ae^{igx} (c) $Ae^{-gx} + Be^{gx}$ (d) Ae^{gx} (e) $Ae^{ikx} + Be^{-ikx}$
- 2- For the finite square barrier potential shown below, Figure A. For x<a, the space part of the electron wave function has the form: $k^2 = 2mE/\hbar^2$ and $g^2 = 2m(V_o - E)/\hbar^2$

 - (a) Ae^{ikx} (b) Ae^{igx} (c) $Ae^{-gx} + Be^{gx}$
 - (d) Ae^{gx} (e) $Ae^{ikx} + Be^{-ikx}$

Figure A

- 3- Consider a step potential shown in Figure B. Which of the following statement is correct for a particle with E<0.
- (a) The form of the wave function to the left is e^{ikx} , where $k^2 = 2mE/\hbar^2$.
- (b) The form of the wave function to the left is e^{igx} where $g^2=2m(V_o-E)/\hbar^2$.
- (c) There is no bound state.
- (d) All of the above.
- (e) None of the above.
- 4- If the particle energy E was $0 \le E \le V_0$ for the step potential shown in Figure B. Which of the following statement is correct.
 - (a) The form of the wave function to the left is e^{ikx} , where $k^2 = 2mE/\hbar^2$.
 - (b) The form of the wave function to the left is e^{igx} where $g^2=2m(V_o-E)/\hbar^2$.
 - (c) There is no bound state.
 - (d) All of the above.
 - (e) None of the above.

Figure B

- 5- The wave function of a particle in a harmonic oscillator potential is given by $\Psi(x)=c_1\Psi_1+c_2\Psi_2+c_3\Psi_3$, where Ψ_i are eigen-states of a harmonic oscillator Hamiltonian. What is the probability that measurement of the particle energy yields a value E_1 , eigen-value corresponding to the eigen-state Ψ_1 (c) $c_1/(c_1+c_2+c_3)$ (d) $c_1c_2c_3$
- (a) c1
- (b) c_1^2

- (e) $c_1^2/(c_1+c_2+c_3)^2$
- 6- The accepted interpretation of a particles wave function $\Psi(x,t)$ is $|\Psi(x,t)|^2 dx$ is the probability the particle is between x and x+dx at time t
 - (a) True
- (b) False
- 7- $\partial/\partial t (\Psi^*(x,t) \Psi(x,t) dx.) = 0$. This statement is
- (a) True
- (b) False
- 8- $\int (\Psi^*(x,t) \Psi(x,t) dx.) = 1$. This statement is
- (a)True
- (b) False
- 9- If the ground state energy of a quantum harmonic oscillator was zero it would have violated
- (a) The Principle of Conservation of Energy
- (b) The Principle of Conservation of Angular Momentum
- (c) The Uncertainity Principle
- (d) All of the above
- (e) None of the above
- 10- If the commutator of two operators A and B is zero, that is [A,B]=0, then one can conclude
 - (a) The two operators can be measured simultaneously.
 - (b) The two operators have mutual eigenvectors that will diagonalize them.
- (c) AB = BA
- (d) All of the above.
- (e) None of the above.